
Aktuelle Tagungsinformationen
News and Updates
Anmeldung zur Tagung
Registration
Hotelbuchung
Hotel Registration
Grußwort
Welcome address
Beteiligte Gesellschaften
Societies involved
Eröffnung des Kongresses
Opening Ceremony
Preise
Awards
Wissenschaftliches Programm
Scientific program
Posterpräsentationen
Poster Presentation
Kurse
Courses
Begleitende Veranstaltungen
Collateral Events
Rahmenprogramm
Social program
Jubiläumsparty
Jubilee Party
DOG Information
DOG Information
Allgemeine Informationen
General Information
Autorenindex
Index of Authors
Ausstellerliste
Exhibitors
Sponsoren
Sponsors
Teilnahmegebühren
Registration fees
Impressum
DOG Homepage
|
Diagnosis of Glaucoma by Indirect Classifiers
1Peters A., 1Lausen B., 2Michelson G., 1Tessmar J., 1Gefeller O., 1Friedrich-Alexander-Universität, Institut für Medizininformatik, Biometrie und Epidemiologie (IMBE) (Erlangen) 2Friedrich-Alexander-Universität, Augenklinik (Erlangen)
Purpose: To classify subjects as normal or glaucomatous based on data from the Heidelberg Retina Tomograph, papillometry, perimetry and medical history. Methods: Data from a cross-sectional study including 85 glaucomatous and 85 normal eyes (matched by age and sex) are classified to normal or glaucoma. A framework called indirect classification (cf. Hand et al., 2001) is used to combine medical knowledge about the disease and statistical classification methods in order to reduce the misclassification error, i.e. to increase sensitivity and specifity. Classification trees are the utilized statistical tool in the framework of indirect classification. Bagging the procedure leads to a reduction of the misclassification rate, cf. Breiman (1996). Indirect classification results are compared with results of linear discriminant analysis, classification trees and bagged classification trees. Results: Linear discriminant analysis classifies 29.0% (Senitivity: 71.0%, Specifity: 75.5%) of the eyes incorrect. The misclassification error is 27.3% (Senitivity: 72.5%, Specifity: 72.9%) using classification trees and lowered onto 19.3% (Senitivity: 79.7%, Specifity: 81.7%) by bagging the classification trees. In contrast to that, indirect classification achieves in general smaller misclassification results. Incorporating classification trees in the framework of indirect classification classifies 22.8% (Senitivity: 78.5%, Specifity: 75.9%) of the eyes incorrect. Bagging the procedure lowers the misclassification rate onto 17.9% (Senitivity: 87.3%, Specifity: 76.9%). Conclusions: Classification based on the given data is improved by combining medical knowledge and statistical classification methods. References: Breiman L (1996): Bagging predictors, Machine Learning 24,123-140. Hand DJ, Li HG, Adams NM (2001): Supervised classification with structured class definitions, Computational Statistics & Data Analysis, 36, 209-225.
Zurück/Back
|